Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 8(4): 268-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22653738

RESUMO

Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs.


Assuntos
Reatores Biológicos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Estresse Fisiológico , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Camundongos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Kidney Int ; 67(5): 1785-96, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15840025

RESUMO

BACKGROUND: Renal ischemia/reperfusion (I/R) is a complex neutrophil-mediated syndrome. Adenosine-triphosphate (ATP)-sensitive potassium (K(ATP)) channels are involved in neutrophil migration in vivo. In the present study, we have investigated the effects of glibenclamide, a K(ATP) channel blocker, in renal I/R injury in rats. METHODS: The left kidney of the rats was excised through a flank incision and ischemia was performed in the contralateral kidney by total interruption of renal artery flow for 45 minutes. Renal perfusion was reestablished, and the kidney and lungs were removed for analysis of vascular permeability, neutrophil accumulation, and content of cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-10] 4 and 24 hours later. Renal function was assessed by measuring creatinine, Na(+), and K(+) levels in the plasma and by determination of creatinine clearance. Drugs were administered subcutaneously after the onset of ischemia. RESULTS: Reperfusion of the ischemic kidney induced local (kidney) and remote (lung) inflammatory injury and marked renal dysfunction. Glibenclamide (20 mg/kg) significantly inhibited the reperfusion-associated increase in vascular permeability, neutrophil accumulation, increase in TNF-alpha levels and nuclear factor-kappaB (NF-kappaB) translocation. These inhibitory effects were noticed in the kidney and lungs. Moreover, glibenclamide markedly ameliorated the renal dysfunction at 4 and 24 hours. CONCLUSION: Treatment with glibenclamide is associated with inhibition of neutrophil recruitment and amelioration of renal dysfunction following renal I/R. Glibenclamide may have a therapeutic role in the treatment of renal I/R injury, such as after renal transplantation.


Assuntos
Glibureto/farmacologia , Rim/efeitos dos fármacos , Rim/lesões , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trifosfato de Adenosina/metabolismo , Animais , Citocinas/metabolismo , Diazóxido/farmacologia , Modelos Animais de Doenças , Interleucina-10/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Masculino , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...